Nest post vamos fazer um resumo teórico introduzindo o conceito de função. Vamos usar muitos conceitos apresentados no post de Conjuntos, Variáveis e Equações e do post de Reta Numérica e Par Ordenado! Vamos nessa!
Definição
Uma função f é uma lei (relação) que faz cada elemento x de um conjunto A corresponder a um único elemento y do conjunto B. Dizemos que y é a variável dependente e x a variável independente.
Podemos expressar matematicamente a definição das seguintes formas:
- f: A B ou f: A B (Lê-se: função ƒ de A em B, ou aplicação ƒ de A em B, ou transformação ƒ de A em B.)
- x y (Lê-se: função ƒ transforma (ou leva) x em y.)
- y = f(x) (Lê-se: y é uma função ƒ de x o valor de y depende do valor atribuído a x).
Exemplo 1: Dada a expressão y = x + 2 . Lembra que podemos escrever y = f(x)? Com isso queremos dizer que o valor de y depende do valor de x! Então, vamos escolher três (3) valores para x e avaliar como y varia.
- Quando x = -1, quanto vale f(-1) = ? ; f(x) = x + 2 f(-1) = -1 + 2 f(-1) = 2
- Quando x = 0, quanto vale f(0) = ? ; f(x) = x + 2 f(0) = 0 + 2 f(0) = 3
- Quando x = 1, quanto vale f(1) = ? ; f(x) = x + 2 f(-1) = 1 + 2 f(1) = 4
Comentários: Perceba que mostramos como o valor de y varia quando o valor de x varia, ou seja, o valor de y depende do valor de x.
Domínio, Contradomínio e Imagem da Função
Voltando à primeira definição de função, o conjunto A é denominado de Domínio D(f) da função e o conjunto B é o Contradomínio CD(f). Para cada x D, o y CD é denominado de Imagem da função Im(f) ou Im.
Voltemos ao Exemplo 1: Perceba que poderíamos ter escolhido infinitos números para x e testar na expressão y = x + 2.
O conjunto {-1 ; 0 ; 1} é um subconjunto (muito pequeno) do Domínio D(f) da função. Por isso, podemos dizer que {-1 ; 0 ; 1} D(f).
O conjunto {2 ; 3 ; 4} é um subconjunto (também muito pequeno) da Imagem Im(f) da função. Por isso, podemos dizer que {2 ; 3 ; 4} Im(f).
Observação: Por tradição/convenção, a variável dependente é representada pela letra y; e a variável dependente é representada pela letra x. Mas em cada problema você pode usar as letras que achar mais conveniente. O importante é sempre definir qual variável é a independente e qual é a dependente.
Alguns Exemplos a partir da Definição
Exemplo 2: Algumas formas de expressar uma função:
a) y = 2x + 1
b) y = 4 – x
c) y = 1,5x – 4,25
Exemplo 3: Analisando através da Tabela 1 como o custo de abastecimento de combustível varia em função do volume de combustível. Pergunta-se:
a) Quanto custa 1L de combustível? Qual a expressão que define o custo em função do volume?
R: Se 5L custam R$12,50, 1L custa 12,50/5 = 2,50.
Portanto, temos que C = 2,5V, onde C é o custo de abastecimento e V é o volume abastecido.
b) Quanto custa 8L de combustível?
R: Sabendo a forma da função Custo em função do Volume é C = 2,5V, temos que C = 2,5*8 C = 20,00.
c) Se alguém paga R$60,00, quantos litros essa pessoa abasteceu?
R: Substituindo na expressão C = 2,5V fica 60 = 2,5V V = 60/2,5 V = 24L
Comentários: Através do Exemplo 2, vimos que o custo de abastecimento C é dependente do volume abastecido V (variável independente). Com isso podemos dizer que nesse caso que a função y = f(x) pode ser escrita na forma C = f(V).
Mais um exemplo!
Exemplo 4: Dado um retângulo com lado maior de m e lado menor n e perímetro de 24cm.
Nesse caso:
a) Qual a lei que rege a relação de m em função de n?
R: O perímetro (2p) de um retângulo é dada pela seguinte expressão 2p = 2m + 2n. Temos: 24 = 2m + 2n 2m = 24 – 2n m = (lei que define a relação entre o lado maior e menor).
b) Se o lado menor for 3cm, qual o valor do lado maior?
R: Sabendo que m = , temos: m = m = 9cm
Pergunta 1: Um automóvel em linha reta numa estrada percorre as distâncias (d) de acordo com os seguinte tempos (t):
a) Determine a função que relaciona d e t.
b) Qual a distância percorrida após 5h de viagem?
Assista ao vídeo para consolidar os conhecimentos:
Tranquilo? Acompanhou esse resumo teórico de conceito de função? Espero que sim!
Fique sempre de olho no Blog do Kuadro e no Canal do Kuadro para mais Resumos Teóricos. Até mais!