INEQUAÇÃO MODULAR
As desigualdades que apresentam a incógnita dentro do módulo, são chamadas de Inequações Modulares. Para resolver esse tipo de inequação, pode-se utilizar a seguinte propriedade:
ou
Exemplo
Resolver, em , as inequações a seguir:
a)
b)
INEQUAÇÃO MODULAR - Outros exemplos
As desigualdades que apresentam a incógnita dentro do módulo, são chamadas de Inequações Modulares. Para resolver esse tipo de inequação, pode-se utilizar a seguinte propriedade:
ou |
Exemplos
1. (Espcex 2014) Se , então:
a)
b)
c)
d)
e)
Resolução
Gabarito: Letra c
2. (CFTMG 2012) O conjunto dos números reais que tornam a função maior que 5 é
a) .
b) .
c) .
d) .
Resolução
Gabarito: letra d
3. (EFOMM 2020) A inequação é satisfeita por um número de valores inteiros de igual a
a) 5
b) 6
c) 7
d) 8
e) 9
Resolução
Do enunciado,
Daí,
Do gráfico, os valores inteiros que satisfazem a desigualdade dada é:
0, 1, 2, 3, 4, 5, 6, 7 e 8.
Portanto, a desigualdade dada é satisfeita para 9 valores inteiros de x.
Gabarito: Letra e