(AFA - 2011)
Se \(\alpha =\sqrt{2} \cdot \sqrt{2+\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(\alpha \in ( \mathbb{R}-\mathbb{N})\)
\(\alpha\) pode ser escrito na forma \(\alpha\) = 2k, k \(\in \mathbb{Z}\)
\(\alpha \in [(\mathbb{Q}-\mathbb{Z}) \cup (\mathbb{R}-\mathbb{Q})]\)
\([(\mathbb{Z}\cap\mathbb{Q}) \cap (\mathbb{R}-\mathbb{N})]\supset \alpha\)