ENEM

ITA

IME

FUVEST

UNICAMP

UNESP

UNIFESP

UFPR

UFRGS

UNB

VestibularEdição do vestibular
Disciplina

(Pucrj 2015) Sejam r e s as retas de equações y =

Matemática | geometria analítica | equação da reta | equação geral da reta
Matemática | geometria analítica | equação da reta | feixe de retas concorrentes
Matemática | geometria analítica | equação da reta | feixe de retas paralelas
Matemática | geometria analítica | equação da reta | formas de equação da reta
Matemática | geometria analítica | equação da reta | intersecção de duas retas
Matemática | geometria analítica | equação da reta | posições relativas de duas retas
Matemática | geometria analítica | teorema angular de retas | ângulo de duas retas
Matemática | geometria analítica | teorema angular de retas | cálculo do coeficiente angular
Matemática | geometria analítica | teorema angular de retas | coeficiente angular de uma reta
Matemática | geometria analítica | teorema angular de retas | condição de paralelismo entre duas retas
Matemática | geometria analítica | teorema angular de retas | condição de perpendicularismo entre duas retas
Matemática | geometria analítica | teorema angular de retas | equação de uma reta passado por P(x,y)
PUC 2015PUC MatemáticaTurma ENEM Kuadro

(Pucrj 2015) Sejam r e s as retas de equações y = x - 2 e y = , respectivamente, representadas no gráfico abaixo. Seja A o ponto de interseção das retas r e s. Sejam B e C os pontos de interseção de r e s com o eixo horizontal, respectivamente.

A área do triângulo ABC vale:

A
1,0
B
1,5
C
3,0
D
4,5
E
6,0