ENEM

ITA

IME

FUVEST

UNICAMP

UNESP

UNIFESP

UFPR

UFRGS

UNB

VestibularEdição do vestibular
Disciplina

(Udesc 2013) Considere o polinômio . Sabe-se que a

Matemática | polinômios | adição de polinômios
Matemática | polinômios | definição de polinõmios
Matemática | polinômios | dispositivo de Briot-Ruffini
Matemática | polinômios | divisão de polinômios
Matemática | polinômios | divisão por binômios do 1º grau
Matemática | polinômios | equações polinomiais | conjunto-solução ou conjunto-verdade
Matemática | polinômios | equações polinomiais | equivalência de equações polinomiais
Matemática | polinômios | equações polinomiais | interpretação geométrica das raízes de um polinômio
Matemática | polinômios | equações polinomiais | multiplicidade de uma raiz
Matemática | polinômios | equações polinomiais | números de raízes
Matemática | polinômios | equações polinomiais | propriedades com raízes complexas
Matemática | polinômios | equações polinomiais | raiz da equação polinomial
Matemática | polinômios | equações polinomiais | raízes complexas
Matemática | polinômios | equações polinomiais | raízes racionais
Matemática | polinômios | equações polinomiais | raízes reais
Matemática | polinômios | equações polinomiais | relações entre coeficientes e raízes
Matemática | polinômios | equações polinomiais | teorema da decomposição
Matemática | polinômios | equações polinomiais | teorema de Bolzano
Matemática | polinômios | método da chave
Matemática | polinômios | método de Descartes
UDESC 2013UDESC MatemáticaTurma ENEM Kuadro

(Udesc 2013) Considere o polinômio . Sabe-se que as raízes de f(x) são os primeiros termos de uma progressão geométrica infinita, cujo primeiro termo é a maior raiz de f(x), e a soma desta progressão é raiz do polinômio g(x)= x+a. Então, o resto da divisão de f(x), por g(x) é:

A
B
C
D
E