(IME - 2013/2014 - 2ª FASE)
TEXTO 1
Escher, o gênio da arte matemática
Com a ajuda da geometria, nada é o que aparenta ser no trabalho holandês
Você já deve ter visto pelo menos uma das gravuras do artista gráfico holandês M. C. Escher. Elas já foram reproduzidas não só em dezenas de livros de arte, mas também na forma de pôsteres, postais, jogos, CD-ROMs, camisetas e até gravatas. Caso não se lembre, então você não viu nenhuma. Olhar para as intrigantes imagens criadas por Escher é uma experiência inesquecível. Tudo o que nelas está representado nunca é exatamente o que parece ser. Há em todas elas, sempre uma surpresa visual – espera do espectador. Isso porque, para ele, o desenho era pura ilusão. A realidade pouco interessava. Antes, preferia o contrário: criar mundos impossíveis que apenas parecessem reais. Eis porque acabou se tornando uma espécie de mágico das artes gráficas.
Seus desenhos, porém, não nasciam de passes de mágica, nem somente de sua apurada técnica de gravador. Sua obra está apoiada em conceitos matemáticos, extraídos especialmente do campo da geometria. Essa era a fonte de seus efeitos surpreendentes. Foi com base nesses princípios que Escher subverteu a noção da perspectiva clássica para obter suas figuras impossíveis de existir no espaço "real". Aliás, desde o começo, fascinou-o essa condição essencial do desenho, que é a representação tridimensional dos objetos na inevitável bidimensionalidade do papel. Brincou com isso o mais que pôde. Também – matemática na divisão regular da superfície usada por Escher para criar, de maneira perfeita, suas famosas séries de metamorfoses, onde formas geométricas abstratas ganham vida e vão, aos poucos, se transformando em aves, peixes, répteis e até seres humanos.
Foi essa proximidade com a ciência que deixou os críticos de arte da época de cabelo em pé. Afinal, como classificar o trabalho de Escher? Era "artístico" o que ele fazia ou puramente "racional"? Na dúvida, preferiram silenciar sobre sua obra durante vários anos. Enquanto isso, o artista foi ganhando a admiração de matemáticos, físicos, cristalógrafos e eruditos em geral. Mas essa é outra faceta surpreendente de Escher. Embora seus trabalhos tivessem forte conteúdo matemático, ele era leigo no assunto. – bem da verdade, Escher sequer foi um bom aluno. Ele mesmo admitiu mais tarde que jamais ganhou, ao menos, um "regular" em matemática. Conta-se até que H.M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, convidou-o a participar de uma de suas aulas. Vexame total. Para decepção do catedrático, Escher não sabia do que ele estava falando, mesmo quando discorria sobre teorias que o artista aplicava intuitivamente em suas gravuras.
GALILEU. Escher, o gênio da matemática. Disponível em: <http://galileu.globo.com/edic/88/conhecimento2.htm>. Acesso em 05/05/2013.
Foto: The M.C. Escher Company B.V. Baarn,The Netherlands. VEJASP. Xilogravura ‘Céu e Água’. Disponível em: <http://vejasp.abril.com.br/atracao/maurits-cornelis-escher>. Acesso em 09/05/2013.
Assinale a opção em que se usou o par de vírgulas para isolar elementos de natureza sintática distinta da dos demais.
Há, em todas elas, uma surpresa visual (...) (linha 3, texto 1).
Aliás, desde o começo, fascinou-o essa condição essencial do desenho, (...) (linha 7, texto 1).
(...) onde formas geométricas abstratas ganham vida e vão, aos poucos, se transformando (...) (linhas 8-9, texto 1).
(...) na divisão regular da superfície usada por Escher para criar, de maneira perfeita, sua famosas séries de metamorfoses, (...) (linha 8, texto 1).
Conta-se até que H. M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, (...) (linha 13, texto 1).