ENEM

ITA

IME

FUVEST

UNICAMP

UNESP

UNIFESP

UFPR

UFRGS

UNB

VestibularEdição do vestibular
Disciplina

(Ita 1995) Sabendo-se que e são raízes do polinômi

Matemática | polinômios | adição de polinômios
Matemática | polinômios | definição de polinõmios
Matemática | polinômios | dispositivo de Briot-Ruffini
Matemática | polinômios | divisão de polinômios
Matemática | polinômios | divisão por binômios do 1º grau
Matemática | polinômios | equações polinomiais | conjunto-solução ou conjunto-verdade
Matemática | polinômios | equações polinomiais | equivalência de equações polinomiais
Matemática | polinômios | equações polinomiais | interpretação geométrica das raízes de um polinômio
Matemática | polinômios | equações polinomiais | multiplicidade de uma raiz
Matemática | polinômios | equações polinomiais | números de raízes
Matemática | polinômios | equações polinomiais | propriedades com raízes complexas
Matemática | polinômios | equações polinomiais | raiz da equação polinomial
Matemática | polinômios | equações polinomiais | raízes complexas
Matemática | polinômios | equações polinomiais | raízes racionais
Matemática | polinômios | equações polinomiais | raízes reais
Matemática | polinômios | equações polinomiais | relações entre coeficientes e raízes
Matemática | polinômios | equações polinomiais | teorema da decomposição
Matemática | polinômios | equações polinomiais | teorema de Bolzano
Matemática | polinômios | método da chave
Matemática | polinômios | método de Descartes
ITA 1995ITA MatemáticaTurma ITA-IME
(Ita 1995) Sabendo-se que  e são raízes do polinômio 2x5 - 22x4 + 74x3 + 2x2 - 420x + 540, então a soma dos quadrados de todas as raízes reais é:
A
17
B
19
C
21
D
23
E
25