(Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 1. Cada número primo de A foi multiplicado por 3. Sabe-se que um número natural P é primo se P 1 e tem apenas dois divisores naturais distintos. 2. A cada um dos demais elementos de A, foi somado o número 1. 3. Cada um dos números distintos obtidos foi escrito em apenas um pequeno cartão. 4. Dentre todos os cartões, foram sorteados exatamente dois cartões com números distintos ao acaso. A probabilidade de em pelo menos um cartão sorteado estar escrito um número par é:
(Uerj 2017) Uma urna contém uma bola branca, quatro bolas pretas e x bolas vermelhas, sendo x 2.Uma bola é retirada ao acaso dessa urna, é observada e recolocada na urna. Em seguida, retira-se novamente, ao acaso, uma bola dessa urna. Se é a probabilidade de que as duas bolas retiradas sejam da mesma cor, o valor de x é:
(UERJ - 2017) Considere o grfico a seguir, em que a rea S limitada pelos eixos coordenados, pela reta r, que passa por A(0, 4) e B(2, 0), e pela reta perpendicular ao eixo x no ponto P(xo,0), sendo 0 xo 2. Para que a rea S seja a metade da rea do tringulo de vrtices C(0, 0), A e B, o valor de xo deve ser igual a:
(Uerj 2017) Considere a matrize nove colunas com números inteiros consecutivos, escrita a seguir. Se o número 18.109 é um elemento da última linha, linha de ordem n, o número de linhas dessa matriz é:
(UERJ - 2017) No esquema abaixo, esto representados um quadrado ABCD e um crculo de centro P e raio r, tangente s retas AB e BC. O lado do quadrado mede 3r. A medida do ngulo CAP pode ser determinada a partir da seguinte identidade trigonomtrica: O valor da tangente de igual a:
(UERJ - 2017) Um fisioterapeuta elaborou o seguinte plano de treinos dirios para o condicionamento de um maratonista que se recupera de uma contuso: - primeiro dia corrida de 6 km; - dias subsequentes - acrscimo de 2 km corrida de cada dia imediatamente anterior. O ltimo dia de treino ser aquele em que o atleta correr 42 km. O total percorrido pelo atleta nesse treinamento, do primeiro ao ltimo dia, em quilmetros, corresponde a:
(UERJ - 2016) Dois dados, com doze faces pentagonais cada um, tm a forma de dodecaedros regulares. Se os dodecaedros esto justapostos por uma de suas faces, que coincidem perfeitamente, formam um poliedro cncavo, conforme ilustra a figura. Considere o nmero de vrtices V, de faces F e de arestas A desse poliedro cncavo. A soma V + F + A igual a:
(Uerj 2016) Na figura abaixo, estão representados dois círculos congruentes, de centros C1 e C2, pertencentes ao mesmo plano . O segmento mede 6 cm. A área da região limitada pelos círculos, em cm2 , possui valor aproximado de:
(UERJ - 2016) O ano bissexto possui 366 dias e sempre mltiplo de 4. O ano de 2012 foi o ltimo bissexto. Porm, h casos especiais de anos que, apesar de mltiplos de 4, no so bissextos: so aqueles que tambm so mltiplos de 100 e no so mltiplos de 400. O ano de 1900 foi o ltimo caso especial. A soma dos algarismos do prximo ano que ser um caso especial :
(Uerj 2016) Uma campanha de supermercado permite a troca de oito garrafas vazias, de qualquer volume, por uma garrafa de 1 litro cheia de guaraná. Considere uma pessoa que, tendo 96 garrafas vazias, fez todas as trocas possíveis. Após esvaziar todas as garrafas que ganhou, ela também as troca no mesmo supermercado. Se não são acrescentadas novas garrafas vazias, o total máximo de litros de guaraná recebidos por essa pessoa em todo o processo de troca equivale a:
Ao digitar corretamente a expressão em uma calculadora, o retorno obtido no visor corresponde a uma mensagem de erro, uma vez que esse logaritmo não é um número real. Determine todos os valores reais de xpara que o valor da expressão seja um número real.
(UERJ - 2015) Uma ferramenta utilizada na construo de uma rampa composta pela seguinte estrutura: - duas varas de madeira, correspondentes aos segmentos AE e AD, que possuem comprimentos diferentes e formam o ngulo DE igual a 45 - uma travessa, correspondente ao segmento BC, que une as duas varas e possui uma marca em seu ponto mdio M - um fio fixado no vrtice A e amarrado a uma pedra P na outra extremidade; - nesse conjunto, os segmentos AB e AC so congruentes. Observe o esquema que representa essa estrutura: Quando o fio passa pelo ponto M, a travessa BC fica na posio horizontal. Com isso, obtmse, na reta que liga os pontos D e E, a inclinao desejada. Calcule , supondo que o ngulo AD mede 85.
(Uerj 2015) Uma ferramenta utilizada na construção de uma rampa é composta pela seguinte estrutura: - duas varas de madeira, correspondentes aos segmentos AE e AD, que possuem comprimentos diferentes e formam o ângulo DÂE igual a 45º- uma travessa, correspondente ao segmento BC, que une as duas varas e possui uma marca em seu ponto médio M - um fio fixado no vértice A e amarrado a uma pedra P na outra extremidade; - nesse conjunto, os segmentos AB e AC são congruentes. Observe o esquema que representa essa estrutura: Quando o fio passa pelo ponto M, a travessa BC fica na posição horizontal. Com isso, obtémse, na reta que liga os pontos D e E, a inclinação α desejada. Calcule , α supondo que o ângulo AÊD mede 85º.
(UERJ - 2014) Em um recipiente com a forma de um paraleleppedo retngulo com 40 cm de comprimento, 25 cm de largura e 20 cm de altura, foram depositadas, em etapas, pequenas esferas, cada uma com volume igual a 0,5 cm3 . Na primeira etapa, depositou-se uma esfera; na segunda, duas; na terceira, quatro; e assim sucessivamente, dobrando-se o nmero de esferas a cada etapa. Admita que, quando o recipiente est cheio, o espao vazio entre as esferas desprezvel. Considerando 210= 1000, o menor nmero de etapas necessrias para que o volume total de esferas seja maior do que o volume do recipiente :
(Uerj 2014) Um feirante vende ovos brancos e vermelhos. Em janeiro de um determinado ano, do total de vendas realizadas, 50% foram de ovos brancos e os outros 50% de ovos vermelhos. Nos meses seguintes, o feirante constatou que, a cada mês, as vendas de ovos brancos reduziram-se 10% e as de ovos vermelhos aumentaram 20%, sempre em relação ao mês anterior. Ao final do mês de março desse mesmo ano, o percentual de vendas de ovos vermelhos, em relação ao número total de ovos vendidos em março, foi igual a: