ENEM

ITA

IME

FUVEST

UNICAMP

UNESP

UNIFESP

UFPR

UFRGS

UNB

VestibularEdição do vestibular
Disciplina

(ITA - 75) Se dividirmos um polinômio P(x) por x -

Matemática | polinômios | adição de polinômios
Matemática | polinômios | definição de polinõmios
Matemática | polinômios | dispositivo de Briot-Ruffini
Matemática | polinômios | divisão de polinômios
Matemática | polinômios | divisão por binômios do 1º grau
Matemática | polinômios | equações polinomiais | conjunto-solução ou conjunto-verdade
Matemática | polinômios | equações polinomiais | equivalência de equações polinomiais
Matemática | polinômios | equações polinomiais | interpretação geométrica das raízes de um polinômio
Matemática | polinômios | equações polinomiais | multiplicidade de uma raiz
Matemática | polinômios | equações polinomiais | números de raízes
Matemática | polinômios | equações polinomiais | propriedades com raízes complexas
Matemática | polinômios | equações polinomiais | raiz da equação polinomial
Matemática | polinômios | equações polinomiais | raízes complexas
Matemática | polinômios | equações polinomiais | raízes racionais
Matemática | polinômios | equações polinomiais | raízes reais
Matemática | polinômios | equações polinomiais | relações entre coeficientes e raízes
Matemática | polinômios | equações polinomiais | teorema da decomposição
Matemática | polinômios | equações polinomiais | teorema de Bolzano
Matemática | polinômios | método da chave
Matemática | polinômios | método de Descartes
ITA 1975ITA MatemáticaTurma ITA-IME

(ITA - 75) Se dividirmos um polinômio P(x) por x - 2, o resto é 13 e se dividirmos P(x) por (x + 2), o resto é 5. Supondo que R(x) é o resto da divisão de P(x) por x2 - 4, podemos afirmar que o valor de R(x), para x = 1 é:

A

zero.

B

7

C

9

D

11

E

nenhuma das anteriores.