(IME - 2005/2006 - 2 FASE)
Considere os pontos A(–1,0) e B(2,0) e seja C uma circunferência de raio R tangente ao eixo das abscissas na origem. A reta r1 é tangente a C e contém o ponto A e a reta r2 também é tangente a C e contém o ponto B. Sabendo que a origem não pertence às retas r1 e r2 , determine a equação do lugar geométrico descrito pelo ponto de interseção de r1 e r2 ao se variar R no intervalo \((0,\infty)\)