(UNICAMP - 2015) Seja 𝑟 a reta de equação cartesiana 𝑥 + 2𝑦 = 4. Para cada número real 𝑡 tal que 0 < 𝑡 < 4, considere o triângulo 𝑇 de vértices em (0, 0), (𝑡, 0) e no ponto 𝑃 de abscissa 𝑥 = 𝑡 pertencente à reta 𝑟, como mostra a figura abaixo.
a) Para 0 < 𝑡 < 4, encontre a expressão para a função 𝐴(𝑡), definida pela área do triângulo 𝑇, e esboce o seu gráfico.
b) Seja 𝑘 um número real não nulo e considere a função 𝑔(𝑥) = 𝑘/𝑥, definida para todo número real 𝑥 não nulo. Determine o valor de 𝑘 para o qual o gráfico da função 𝑔 tem somente um ponto em comum com a reta 𝑟.
Gráfico do campo de respostas