[IME- 2010/2011 - 2ª fase]
Seja ABC um triângulo onde α, β e γ são os ângulos internos dos vértices A,B e C, respectivamente. Esse triângulo está inscrito em um círculo de raio unitário. As bissetrizes internas desses ângulos interceptam esse círculo nos pontos \(A_{1}, B_{1} \ e \ C_{1}\), respectivamente. Determine o valor da expressão
\(\frac{\overline{AA_{1}}cos\frac{\alpha}{2}+\overline{BB_{1}}cos\frac{\beta}{2}+\overline{CC_{1}}cos\frac{Y}{2}} {sen\alpha+sen\beta+senY}\)