(IME - 2018/2019 - 2ª FASE)
Definimos a função f: \(\mathbb{N}\rightarrow \mathbb{N}\) da seguinte forma:
\(\left\{\begin{matrix} f(0) =0, & \\f(1) = 1, & \\ f(2n)=f(n), n\geqslant 1 & \\ f(2n+1)=f(n)+ 2^{[log_{2}n]}, n\geq 1 & \end{matrix}\right.\)
Determine f(f(2019)).
Observação : [k] é o maior inteiro menor ou igual a k