(IME - 2013/2014 - 2 FASE) TEXTO1 Escher, o gnio da arte matemtica Com a ajuda da geometria, nada o que aparenta ser no trabalho holands. Voc j deve ter visto pelo menos uma das gravuras do artista grfico holands M. C. Escher. Elas j foram reproduzidas no s em dezenas de livros de arte, mas tambm na forma de psteres, postais, jogos, CD-ROMs, camisetas e at gravatas. Caso no se lembre, ento voc no viu nenhuma. Olhar para as intrigantes imagens criadas por Escher uma experincia inesquecvel. Tudo o que nelas est representado nunca exatamente o que parece ser. H em todas elas, sempre uma surpresa visual espera do espectador. Isso porque, para ele, o desenho era pura iluso. A realidade pouco interessava. Antes, preferia o contrrio: criar mundos impossveis que apenas parecessem reais. Eis porque acabou se tornando uma espcie de mgico das artes grficas. Seus desenhos, porm, no nasciam de passes de mgica, nem somente de sua apurada tcnica de gravador. Sua obra est apoiada em conceitos matemticos, extrados especialmente do campo da geometria. Essa era a fonte de seus efeitos surpreendentes. Foi com base nesses princpios que Escher subverteu a noo da perspectiva clssica para obter suas figuras impossveis de existir no espao real. Alis, desde o comeo, fascinou-o essa condio essencial do desenho, que a representao tridimensional dos objetos na inevitvel bidimensionalidade do papel. Brincou com isso o mais que pde. Tambm matemtica na diviso regular da superfcie usada por Escher para criar, de maneira perfeita, suas famosas sries de metamorfoses, onde formas geomtricas abstratas ganham vida e vo, aos poucos, se transformando em aves, peixes, rpteis e at seres humanos. Foi essa proximidade com a cincia que deixou os crticos de arte da poca de cabelo em p. Afinal, como classificar o trabalho de Escher? Era artstico o que ele fazia ou puramente racional? Na dvida, preferiram silenciar sobre sua obra durante vrios anos. Enquanto isso, o artista foi ganhando a admirao de matemticos, fsicos, cristalgrafos e eruditos em geral. Mas essa outra faceta surpreendente de Escher. Embora seus trabalhos tivessem forte contedo matemtico, ele era leigo no assunto. bem da verdade, Escher sequer foi um bom aluno. Ele mesmo admitiu mais tarde que jamais ganhou, ao menos, um regular em matemtica. Conta-se at que H.M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, convidou-o a participar de uma de suas aulas. Vexame total. Para decepo do catedrtico, Escher no sabia do que ele estava falando, mesmo quando discorria sobre teorias que o artista aplicava intuitivamente em suas gravuras. GALILEU. Escher, o gnio da matemtica. Disponvel em: http://galileu.globo.com/edic/88/conhecimento2.htm. Acesso em 05/05/2013. Foto: The M.C. Escher Company B.V. Baarn,The Netherlands. VEJASP. Xilogravura Cu e gua. Disponvel em: http://vejasp.abril.com.br/atracao/maurits-cornelis-escher. Acesso em 09/05/2013. TEXTO 2 Arte estimula o aprendizado de matemtica Resolver operaes matemticas foi difcil para muitos dos gnios da cincia, e continua pouco atraente para muitos alunos em salas de aula. Muita gente pensa em vincular matemtica com a arte para tornar o aprendizado mais estimulante. O professor Luiz Barco, da Escola de Comunicaes e Artes, da Universidade de So Paulo (USP) um deles. H mais matemtica nos livros de Machado de Assis, nos poemas de Ceclia Meireles e Fernando Pessoa do que na maioria dos livros didticos de matemtica. Para ele, a matemtica captura lgica do raciocnio, assim como acontece com o imaginrio na literatura, com a harmonia na msica, na escultura, na pintura, nas artes em geral. Para o pesquisador Antnio Conde, do Instituto de Matemtica e Computao da USP/So Carlos, a convivncia entre arte e matemtica aumentaria a capacidade de absoro dos estudantes. O lado esttico da matemtica muito forte, a demonstrao de um teorema uma obra de arte, conclui. O holands Maurits Cornelis Escher , provavelmente, um dos maiores representantes dessa ligao, produzindo obras de arte geometricamente estruturadas. Ele provou, na prtica, que possvel olhar formas espaciais do ponto de vista matemtico, ou sob o seu aspecto esttico, utilizando-as para se expressar plasticamente. Olhando os enigmas que nos rodeiam e ponderando e analisando as minhas observaes, entro em contato com o mundo da matemtica, dizia Escher, que morreu em 1972. CINCIA E CULTURA. Arte estimula o aprendizado de matemtica. Disponvel em: http://cienciaecultura.bvs.br/scielo.php?pid=S0009-67252003000100017script=sci_arttext. Acesso em 05/05/2013. TEXTO 3 Poesia Matemtica Millr Fernandes 1 s folhas tantas 2 do livro matemtico 3 um Quociente apaixonou-se 4 um dia 5 doidamente 6 por uma Incgnita. 7 Olhou-a com seu olhar inumervel 8 e viu-a do pice __ base 9 uma figura mpar; 10 olhos romboides, boca trapezoide, 11 corpo retangular, seios esferoides. 12 Fez de sua uma vida 13 paralela dela 14 at que se encontraram 15 no infinito. 16 Quem s tu?, indagou ele 17 em nsia radical. 18 Sou a soma do quadrado dos catetos. 19 Mas pode me chamar de Hipotenusa. 20 E de falarem descobriram que eram 21 (o que em aritmtica corresponde 22 a almas irms) 23 primos entre si. 24 E assim se amaram 25 ao quadrado da velocidade da luz 26 numa sexta potenciao 27 traando 28 ao sabor do momento 29 e da paixo 30 retas, curvas, crculos e linhas senoidais 31 nos jardins da quarta dimenso. 32 Escandalizaram os ortodoxos das frmulas euclidiana 33 e os exegetas do Universo Finito. 34 Romperam convenes newtonianas e pitagricas. 35 E enfim resolveram se casar 36 constituir um lar, 37 mais que um lar, 38 um perpendicular. 39 Convidaram para padrinhos 40 o Poliedro e a Bissetriz. 41 E fizeram planos, equaes e diagramas para o futuro 42 sonhando com uma felicidade 43 integral e diferencial. 44 E se casaram e tiveram uma secante e trs cones 45 muito engraadinhos. 46 E foram felizes 47 at aquele dia 48 em que tudo vira afinal 49 monotonia. 50 Foi ento que surgiu 51 O Mximo Divisor Comum 52 frequentador de crculos concntricos, 53 viciosos. 54 Ofereceu-lhe, a ela, 55 uma grandeza absoluta 56 e reduziu-a a um denominador comum. 57 Ele, Quociente, percebeu 58 que com ela no formava mais um todo, 59 uma unidade. 60 Era o tringulo, 61 tanto chamado amoroso. 62 Desse problema ela era uma frao, 63 a mais ordinria. 64 Mas foi ento que Einstein descobriu a Relatividade 65 e tudo que era esprio passou a ser 66 moralidade 67 como alis em qualquer 68 sociedade RELEITURAS. Poesia matemtica. Disponvel em: http://www.releituras.com/millor_poesia.asp. Acesso em 09/05/2013. Em qual dos trechos a seguir o uso da vrgula justifica-se pelo mesmo motivo que a vrgula foi usada no perodo destacado? Olhando os enigmas que nos rodeiam e ponderando e analisando as minhas observaes, entro em contato com o mundo da matemtica.
(IME - 2013/2014 - 2 FASE) TEXTO1 Escher, o gnio da arte matemtica Com a ajuda da geometria, nada o que aparenta ser no trabalho holands. Voc j deve ter visto pelo menos uma das gravuras do artista grfico holands M. C. Escher. Elas j foram reproduzidas no s em dezenas de livros de arte, mas tambm na forma de psteres, postais, jogos, CD-ROMs, camisetas e at gravatas. Caso no se lembre, ento voc no viu nenhuma. Olhar para as intrigantes imagens criadas por Escher uma experincia inesquecvel. Tudo o que nelas est representado nunca exatamente o que parece ser. H em todas elas, sempre uma surpresa visual espera do espectador. Isso porque, para ele, o desenho era pura iluso. A realidade pouco interessava. Antes, preferia o contrrio: criar mundos impossveis que apenas parecessem reais. Eis porque acabou se tornando uma espcie de mgico das artes grficas. Seus desenhos, porm, no nasciam de passes de mgica, nem somente de sua apurada tcnica de gravador. Sua obra est apoiada em conceitos matemticos, extrados especialmente do campo da geometria. Essa era a fonte de seus efeitos surpreendentes. Foi com base nesses princpios que Escher subverteu a noo da perspectiva clssica para obter suas figuras impossveis de existir no espao real. Alis, desde o comeo, fascinou-o essa condio essencial do desenho, que a representao tridimensional dos objetos na inevitvel bidimensionalidade do papel. Brincou com isso o mais que pde. Tambm matemtica na diviso regular da superfcie usada por Escher para criar, de maneira perfeita, suas famosas sries de metamorfoses, onde formas geomtricas abstratas ganham vida e vo, aos poucos, se transformando em aves, peixes, rpteis e at seres humanos. Foi essa proximidade com a cincia que deixou os crticos de arte da poca de cabelo em p. Afinal, como classificar o trabalho de Escher? Era artstico o que ele fazia ou puramente racional? Na dvida, preferiram silenciar sobre sua obra durante vrios anos. Enquanto isso, o artista foi ganhando a admirao de matemticos, fsicos, cristalgrafos e eruditos em geral. Mas essa outra faceta surpreendente de Escher. Embora seus trabalhos tivessem forte contedo matemtico, ele era leigo no assunto. bem da verdade, Escher sequer foi um bom aluno. Ele mesmo admitiu mais tarde que jamais ganhou, ao menos, um regular em matemtica. Conta-se at que H.M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, convidou-o a participar de uma de suas aulas. Vexame total. Para decepo do catedrtico, Escher no sabia do que ele estava falando, mesmo quando discorria sobre teorias que o artista aplicava intuitivamente em suas gravuras. GALILEU. Escher, o gnio da matemtica. Disponvel em: http://galileu.globo.com/edic/88/conhecimento2.htm. Acesso em 05/05/2013. Foto: The M.C. Escher Company B.V. Baarn,The Netherlands. VEJASP. Xilogravura Cu e gua. Disponvel em: http://vejasp.abril.com.br/atracao/maurits-cornelis-escher. Acesso em 09/05/2013. TEXTO 2 Arte estimula o aprendizado de matemtica Resolver operaes matemticas foi difcil para muitos dos gnios da cincia, e continua pouco atraente para muitos alunos em salas de aula. Muita gente pensa em vincular matemtica com a arte para tornar o aprendizado mais estimulante. O professor Luiz Barco, da Escola de Comunicaes e Artes, da Universidade de So Paulo (USP) um deles. H mais matemtica nos livros de Machado de Assis, nos poemas de Ceclia Meireles e Fernando Pessoa do que na maioria dos livros didticos de matemtica. Para ele, a matemtica captura lgica do raciocnio, assim como acontece com o imaginrio na literatura, com a harmonia na msica, na escultura, na pintura, nas artes em geral. Para o pesquisador Antnio Conde, do Instituto de Matemtica e Computao da USP/So Carlos, a convivncia entre arte e matemtica aumentaria a capacidade de absoro dos estudantes. O lado esttico da matemtica muito forte, a demonstrao de um teorema uma obra de arte, conclui. O holands Maurits Cornelis Escher , provavelmente, um dos maiores representantes dessa ligao, produzindo obras de arte geometricamente estruturadas. Ele provou, na prtica, que possvel olhar formas espaciais do ponto de vista matemtico, ou sob o seu aspecto esttico, utilizando-as para se expressar plasticamente. Olhando os enigmas que nos rodeiam e ponderando e analisando as minhas observaes, entro em contato com o mundo da matemtica, dizia Escher, que morreu em 1972. CINCIA E CULTURA. Arte estimula o aprendizado de matemtica. Disponvel em: http://cienciaecultura.bvs.br/scielo.php?pid=S0009-67252003000100017script=sci_arttext.Acesso em 05/05/2013. TEXTO 3 Poesia Matemtica Millr Fernandes 1 s folhas tantas 2 do livro matemtico 3 um Quociente apaixonou-se 4 um dia 5 doidamente 6 por uma Incgnita. 7 Olhou-a com seu olhar inumervel 8 e viu-a do pice __ base 9 uma figura mpar; 10 olhos romboides, boca trapezoide, 11 corpo retangular, seios esferoides. 12 Fez de sua uma vida 13 paralela dela 14 at que se encontraram 15 no infinito. 16 Quem s tu?, indagou ele 17 em nsia radical. 18 Sou a soma do quadrado dos catetos. 19 Mas pode me chamar de Hipotenusa. 20 E de falarem descobriram que eram 21 (o que em aritmtica corresponde 22 a almas irms) 23 primos entre si. 24 E assim se amaram 25 ao quadrado da velocidade da luz 26 numa sexta potenciao 27 traando 28 ao sabor do momento 29 e da paixo 30 retas, curvas, crculos e linhas senoidais 31 nos jardins da quarta dimenso. 32 Escandalizaram os ortodoxos das frmulas euclidiana 33 e os exegetas do Universo Finito. 34 Romperam convenes newtonianas e pitagricas. 35 E enfim resolveram se casar 36 constituir um lar, 37 mais que um lar, 38 um perpendicular. 39 Convidaram para padrinhos 40 o Poliedro e a Bissetriz. 41 E fizeram planos, equaes e diagramas para o futuro 42 sonhando com uma felicidade 43 integral e diferencial. 44 E se casaram e tiveram uma secante e trs cones 45 muito engraadinhos. 46 E foram felizes 47 at aquele dia 48 em que tudo vira afinal 49 monotonia. 50 Foi ento que surgiu 51 O Mximo Divisor Comum 52 frequentador de crculos concntricos, 53 viciosos. 54 Ofereceu-lhe, a ela, 55 uma grandeza absoluta 56 e reduziu-a a um denominador comum. 57 Ele, Quociente, percebeu 58 que com ela no formava mais um todo, 59 uma unidade. 60 Era o tringulo, 61 tanto chamado amoroso. 62 Desse problema ela era uma frao, 63 a mais ordinria. 64 Mas foi ento que Einstein descobriu a Relatividade 65 e tudo que era esprio passou a ser 66 moralidade 67 como alis em qualquer 68 sociedade RELEITURAS. Poesia matemtica. Disponvel em: http://www.releituras.com/millor_poesia.asp. Acesso em 09/05/2013. Assinale a opo que apresenta o par de definies adequadas s palavras ortodoxos (v. 32, texto 3) e esprio (v. 65, texto 3), respectivamente.
(IME - 2013/2014 - 2 FASE) TEXTO 3 Poesia Matemtica Millr Fernandes 1 s folhas tantas 2 do livro matemtico 3 um Quociente apaixonou-se 4 um dia 5 doidamente 6 por uma Incgnita. 7 Olhou-a com seu olhar inumervel 8 e viu-a do pice __ base 9 uma figura mpar; 10 olhos romboides, boca trapezoide, 11 corpo retangular, seios esferoides. 12 Fez de sua uma vida 13 paralela dela 14 at que se encontraram 15 no infinito. 16 Quem s tu?, indagou ele 17 em nsia radical. 18 Sou a soma do quadrado dos catetos. 19 Mas pode me chamar de Hipotenusa. 20 E de falarem descobriram que eram 21 (o que em aritmtica corresponde 22 a almas irms) 23 primos entre si. 24 E assim se amaram 25 ao quadrado da velocidade da luz 26 numa sexta potenciao 27 traando 28 ao sabor do momento 29 e da paixo 30 retas, curvas, crculos e linhas senoidais 31 nos jardins da quarta dimenso. 32 Escandalizaram os ortodoxos das frmulas euclidiana 33 e os exegetas do Universo Finito. 34 Romperam convenes newtonianas e pitagricas. 35 E enfim resolveram se casar 36 constituir um lar, 37 mais que um lar, 38 um perpendicular. 39 Convidaram para padrinhos 40 o Poliedro e a Bissetriz. 41 E fizeram planos, equaes e diagramas para o futuro 42 sonhando com uma felicidade 43 integral e diferencial. 44 E se casaram e tiveram uma secante e trs cones 45 muito engraadinhos. 46 E foram felizes 47 at aquele dia 48 em que tudo vira afinal 49 monotonia. 50 Foi ento que surgiu 51 O Mximo Divisor Comum 52 frequentador de crculos concntricos, 53 viciosos. 54 Ofereceu-lhe, a ela, 55 uma grandeza absoluta 56 e reduziu-a a um denominador comum. 57 Ele, Quociente, percebeu 58 que com ela no formava mais um todo, 59 uma unidade. 60 Era o tringulo, 61 tanto chamado amoroso. 62 Desse problema ela era uma frao, 63 a mais ordinria. 64 Mas foi ento que Einstein descobriu a Relatividade 65 e tudo que era esprio passou a ser 66 moralidade 67 como alis em qualquer 68 sociedade RELEITURAS. Poesia matemtica. Disponvel em: http://www.releituras.com/millor_poesia.asp. Acesso em 09/05/2013. A repetio da conjuno e nos versos 41, 44 e 46 do texto 3 revela um trao estilstico que
(IME - 2013/2014 - 2 FASE) TEXTO1 Escher, o gnio da arte matemtica Com a ajuda da geometria, nada o que aparenta ser no trabalho holands. Voc j deve ter visto pelo menos uma das gravuras do artista grfico holands M. C. Escher. Elas j foram reproduzidas no s em dezenas de livros de arte, mas tambm na forma de psteres, postais, jogos, CD-ROMs, camisetas e at gravatas. Caso no se lembre, ento voc no viu nenhuma. Olhar para as intrigantes imagens criadas por Escher uma experincia inesquecvel. Tudo o que nelas est representado nunca exatamente o que parece ser. H em todas elas, sempre uma surpresa visual espera do espectador. Isso porque, para ele, o desenho era pura iluso. A realidade pouco interessava. Antes, preferia o contrrio: criar mundos impossveis que apenas parecessem reais. Eis porque acabou se tornando uma espcie de mgico das artes grficas. Seus desenhos, porm, no nasciam de passes de mgica, nem somente de sua apurada tcnica de gravador. Sua obra est apoiada em conceitos matemticos, extrados especialmente do campo da geometria. Essa era a fonte de seus efeitos surpreendentes. Foi com base nesses princpios que Escher subverteu a noo da perspectiva clssica para obter suas figuras impossveis de existir no espao real. Alis, desde o comeo, fascinou-o essa condio essencial do desenho, que a representao tridimensional dos objetos na inevitvel bidimensionalidade do papel. Brincou com isso o mais que pde. Tambm matemtica na diviso regular da superfcie usada por Escher para criar, de maneira perfeita, suas famosas sries de metamorfoses, onde formas geomtricas abstratas ganham vida e vo, aos poucos, se transformando em aves, peixes, rpteis e at seres humanos. Foi essa proximidade com a cincia que deixou os crticos de arte da poca de cabelo em p. Afinal, como classificar o trabalho de Escher? Era artstico o que ele fazia ou puramente racional? Na dvida, preferiram silenciar sobre sua obra durante vrios anos. Enquanto isso, o artista foi ganhando a admirao de matemticos, fsicos, cristalgrafos e eruditos em geral. Mas essa outra faceta surpreendente de Escher. Embora seus trabalhos tivessem forte contedo matemtico, ele era leigo no assunto. bem da verdade, Escher sequer foi um bom aluno. Ele mesmo admitiu mais tarde que jamais ganhou, ao menos, um regular em matemtica. Conta-se at que H.M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, convidou-o a participar de uma de suas aulas. Vexame total. Para decepo do catedrtico, Escher no sabia do que ele estava falando, mesmo quando discorria sobre teorias que o artista aplicava intuitivamente em suas gravuras. GALILEU. Escher, o gnio da matemtica. Disponvel em: http://galileu.globo.com/edic/88/conhecimento2.htm. Acesso em 05/05/2013. Foto: The M.C. Escher Company B.V. Baarn,The Netherlands. VEJASP. Xilogravura Cu e gua. Disponvel em: http://vejasp.abril.com.br/atracao/maurits-cornelis-escher. Acesso em 09/05/2013. TEXTO 2 Arte estimula o aprendizado de matemtica Resolver operaes matemticas foi difcil para muitos dos gnios da cincia, e continua pouco atraente para muitos alunos em salas de aula. Muita gente pensa em vincular matemtica com a arte para tornar o aprendizado mais estimulante. O professor Luiz Barco, da Escola de Comunicaes e Artes, da Universidade de So Paulo (USP) um deles. H mais matemtica nos livros de Machado de Assis, nos poemas de Ceclia Meireles e Fernando Pessoa do que na maioria dos livros didticos de matemtica. Para ele, a matemtica captura lgica do raciocnio, assim como acontece com o imaginrio na literatura, com a harmonia na msica, na escultura, na pintura, nas artes em geral. Para o pesquisador Antnio Conde, do Instituto de Matemtica e Computao da USP/So Carlos, a convivncia entre arte e matemtica aumentaria a capacidade de absoro dos estudantes. O lado esttico da matemtica muito forte, a demonstrao de um teorema uma obra de arte, conclui. O holands Maurits Cornelis Escher , provavelmente, um dos maiores representantes dessa ligao, produzindo obras de arte geometricamente estruturadas. Ele provou, na prtica, que possvel olhar formas espaciais do ponto de vista matemtico, ou sob o seu aspecto esttico, utilizando-as para se expressar plasticamente. Olhando os enigmas que nos rodeiam e ponderando e analisando as minhas observaes, entro em contato com o mundo da matemtica, dizia Escher, que morreu em 1972. CINCIA E CULTURA. Arte estimula o aprendizado de matemtica. Disponvel em: http://cienciaecultura.bvs.br/scielo.php?pid=S0009-67252003000100017script=sci_arttext. Acesso em 05/05/2013. TEXTO 3 Poesia Matemtica Millr Fernandes 1 s folhas tantas 2 do livro matemtico 3 um Quociente apaixonou-se 4 um dia 5 doidamente 6 por uma Incgnita. 7 Olhou-a com seu olhar inumervel 8 e viu-a do pice __ base 9 uma figura mpar; 10 olhos romboides, boca trapezoide, 11 corpo retangular, seios esferoides. 12 Fez de sua uma vida 13 paralela dela 14 at que se encontraram 15 no infinito. 16 Quem s tu?, indagou ele 17 em nsia radical. 18 Sou a soma do quadrado dos catetos. 19 Mas pode me chamar de Hipotenusa. 20 E de falarem descobriram que eram 21 (o que em aritmtica corresponde 22 a almas irms) 23 primos entre si. 24 E assim se amaram 25 ao quadrado da velocidade da luz 26 numa sexta potenciao 27 traando 28 ao sabor do momento 29 e da paixo 30 retas, curvas, crculos e linhas senoidais 31 nos jardins da quarta dimenso. 32 Escandalizaram os ortodoxos das frmulas euclidiana 33 e os exegetas do Universo Finito. 34 Romperam convenes newtonianas e pitagricas. 35 E enfim resolveram se casar 36 constituir um lar, 37 mais que um lar, 38 um perpendicular. 39 Convidaram para padrinhos 40 o Poliedro e a Bissetriz. 41 E fizeram planos, equaes e diagramas para o futuro 42 sonhando com uma felicidade 43 integral e diferencial. 44 E se casaram e tiveram uma secante e trs cones 45 muito engraadinhos. 46 E foram felizes 47 at aquele dia 48 em que tudo vira afinal 49 monotonia. 50 Foi ento que surgiu 51 O Mximo Divisor Comum 52 frequentador de crculos concntricos, 53 viciosos. 54 Ofereceu-lhe, a ela, 55 uma grandeza absoluta 56 e reduziu-a a um denominador comum. 57 Ele, Quociente, percebeu 58 que com ela no formava mais um todo, 59 uma unidade. 60 Era o tringulo, 61 tanto chamado amoroso. 62 Desse problema ela era uma frao, 63 a mais ordinria. 64 Mas foi ento que Einstein descobriu a Relatividade 65 e tudo que era esprio passou a ser 66 moralidade 67 como alis em qualquer 68 sociedade RELEITURAS. Poesia matemtica. Disponvel em: http://www.releituras.com/millor_poesia.asp. Acesso em 09/05/2013. Quanto ao texto 1, possvel afirmar que
(IME - 2013/2014 - 2 FASE) TEXTO1 Escher, o gnio da arte matemtica Com a ajuda da geometria, nada o que aparenta ser no trabalho holands Voc j deve ter visto pelo menos uma das gravuras do artista grfico holands M. C. Escher. Elas j foram reproduzidas no s em dezenas de livros de arte, mas tambm na forma de psteres, postais, jogos, CD-ROMs, camisetas e at gravatas. Caso no se lembre, ento voc no viu nenhuma. Olhar para as intrigantes imagens criadas por Escher uma experincia inesquecvel. Tudo o que nelas est representado nunca exatamente o que parece ser. H em todas elas, sempre uma surpresa visual espera do espectador. Isso porque, para ele, o desenho era pura iluso. A realidade pouco interessava. Antes, preferia o contrrio: criar mundos impossveis que apenas parecessem reais. Eis porque acabou se tornando uma espcie de mgico das artes grficas. Seus desenhos, porm, no nasciam de passes de mgica, nem somente de sua apurada tcnica de gravador. Sua obra est apoiada em conceitos matemticos, extrados especialmente do campo da geometria. Essa era a fonte de seus efeitos surpreendentes. Foi com base nesses princpios que Escher subverteu a noo da perspectiva clssica para obter suas figuras impossveis de existir no espao real. Alis, desde o comeo, fascinou-o essa condio essencial do desenho, que a representao tridimensional dos objetos na inevitvel bidimensionalidade do papel. Brincou com isso o mais que pde. Tambm matemtica na diviso regular da superfcie usada por Escher para criar, de maneira perfeita, suas famosas sries de metamorfoses, onde formas geomtricas abstratas ganham vida e vo, aos poucos, se transformando em aves, peixes, rpteis e at seres humanos. Foi essa proximidade com a cincia que deixou os crticos de arte da poca de cabelo em p. Afinal, como classificar o trabalho de Escher? Era artstico o que ele fazia ou puramente racional? Na dvida, preferiram silenciar sobre sua obra durante vrios anos. Enquanto isso, o artista foi ganhando a admirao de matemticos, fsicos, cristalgrafos e eruditos em geral. Mas essa outra faceta surpreendente de Escher. Embora seus trabalhos tivessem forte contedo matemtico, ele era leigo no assunto. bem da verdade, Escher sequer foi um bom aluno. Ele mesmo admitiu mais tarde que jamais ganhou, ao menos, um regular em matemtica. Conta-se at que H.M.S. Coxeter, um dos papas da geometria moderna, entusiasmado com os desenhos do artista, convidou-o a participar de uma de suas aulas. Vexame total. Para decepo do catedrtico, Escher no sabia do que ele estava falando, mesmo quando discorria sobre teorias que o artista aplicava intuitivamente em suas gravuras. GALILEU. Escher, o gnio da matemtica. Disponvel em: http://galileu.globo.com/edic/88/conhecimento2.htm. Acesso em 05/05/2013. Foto: The M.C. Escher Company B.V. Baarn,The Netherlands. VEJASP. Xilogravura Cu e gua. Disponvel em: http://vejasp.abril.com.br/atracao/maurits-cornelis-escher. Acesso em 09/05/2013. TEXTO 2 Arte estimula o aprendizado de matemtica Resolver operaes matemticas foi difcil para muitos dos gnios da cincia, e continua pouco atraente para muitos alunos em salas de aula. Muita gente pensa em vincular matemtica com a arte para tornar o aprendizado mais estimulante. O professor Luiz Barco, da Escola de Comunicaes e Artes, da Universidade de So Paulo (USP) um deles. H mais matemtica nos livros de Machado de Assis, nos poemas de Ceclia Meireles e Fernando Pessoa do que na maioria dos livros didticos de matemtica. Para ele, a matemtica captura lgica do raciocnio, assim como acontece com o imaginrio na literatura, com a harmonia na msica, na escultura, na pintura, nas artes em geral. Para o pesquisador Antnio Conde, do Instituto de Matemtica e Computao da USP/So Carlos, a convivncia entre arte e matemtica aumentaria a capacidade de absoro dos estudantes. O lado esttico da matemtica muito forte, a demonstrao de um teorema uma obra de arte, conclui. O holands Maurits Cornelis Escher , provavelmente, um dos maiores representantes dessa ligao, produzindo obras de arte geometricamente estruturadas. Ele provou, na prtica, que possvel olhar formas espaciais do ponto de vista matemtico, ou sob o seu aspecto esttico, utilizando-as para se expressar plasticamente. Olhando os enigmas que nos rodeiam e ponderando e analisando as minhas observaes, entro em contato com o mundo da matemtica, dizia Escher, que morreu em 1972. CINCIA E CULTURA. Arte estimula o aprendizado de matemtica. Disponvel em: http://cienciaecultura.bvs.br/scielo.php?pid=S0009-67252003000100017script=sci_arttext. Acesso em 05/05/2013. Assinale a alternativa que traz uma sntese das ideias apresentadas nos textos 1 e 2.
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 Analise as assertivas a seguir a respeito do texto I e marque a alternativa correta: I. A personificao do zero d um carter ldico histria narrada. II. A origem da palavra zero remete a ideias tais como: vazio, esterilidade e morte. III. Os indianos foram os primeiros a usar matematicamente o conceito do zero.
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. (3 pargrafo, texto I) A ideia contida no trecho acima, sobretudo na palavra em destaque, encontra-se nos fragmentos abaixo, referentes ao texto I, exceto em:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 Segundo o texto I, O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no existente, nulo (3 pargrafo). Marque a alternativa que apresente uma ideia distinta daquela a que se associou o substantivo zero ao longo dos tempos:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. (1 pargrafo) Assinale a nica opo que apresenta construo de estilo diverso do trecho destacado acima, transcrita do texto I.
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. [...] Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo (2 pargrafo, texto I). O adjetivo em destaque pode ser substitudo, sem mudana de sentido, por:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/.Acesso em 15 mar. 2012 Assinale a assertiva que est em desacordo com o texto I:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 Em relao aos textos I e II, assinale a afirmativa correta:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/.Acesso em 15 mar. 2012 A respeito do texto II, marque a assertiva falsa:
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/.Acesso em 15 mar. 2012 Leia atentamente cada uma das afirmativas relacionadas ao texto I, a seguir, e marque a alternativa correta: I. Tomando-se a totalidade do texto, possvel dizer que seu autor usa como estratgia de apresentao do assunto em pauta um modelo teatralizado e que usa tambm recursos da oralidade. II. A afirmativa Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. retrata uma academia fechada em si mesma, pouco interessada na difuso do conhecimento. III. As constataes da histria da matemtica do conta de que as civilizaes ocidentais, como a grega, foram precursoras na abstrao necessria para que se conceba o conceito de zero.
(IME - 2012/2013- 2 FASE) Texto I A IMPORTNCIA DO NMERO ZERO A inveno do zero foi uma das maiores aventuras intelectuais da humanidade e no s para a matemtica (Maria Fernanda Vomero Abril de 2001) 1As regras que valem para todos os outros no servem para ele. S as obedece como e quando bem entende. Assim fao a diferena, costuma dizer. Mas no nem um pouco egosta. Pelo contrrio. Quanto mais direita ele vai, mais aumenta o valor do colega da esquerda, multiplicando-o por dez, 100 ou 1.000. Trata-se de um revolucionrio. Com ar de bonacho, d de ombros quando comparado ao nada. Sou mesmo, diz. Mas isso significa ser tudo. Com vocs, o nmero zero que ganha, nestas pginas, o papel que lhe de direito: o de protagonista de uma odisseia intelectual que mudou o rumo das cincias exatas e trouxe novas reflexes para a histria das ideias. 2 Pode soar como exagero atribuir tal importncia a um nmero aparentemente incuo. s vezes, voc at esquece que ele existe. Quem se preocupa em anotar que voltou da feira com zero laranjas? Ou que comprou rao para seus zero cachorrinhos? S fica preocupado quando descobre um zero na conta bancria. Mesmo assim, logo que chega o pagamento seguinte, no sobra nem lembrana daquele nmero gorducho. 3 O smbolo 0 e o nome zero esto relacionados ideia de nenhum, no-existente, nulo. Seu conceito foi pouco estudado ao longo dos sculos. Hoje, mal desperta alguma curiosidade, apesar de ser absolutamente instigante. O ponto principal o fato de o zero ser e no ser. Ao mesmo tempo indicar o nada e trazer embutido em si algum contedo, diz o astrnomo Walter Maciel, professor da Universidade de So Paulo. Se essa dialtica parece complicada para voc, cidado do sculo XXI, imagine para as tribos primitivas que viveram muitos sculos antes de Cristo. 4 A cultura indiana antiga j trazia uma noo de vazio bem antes do conceito matemtico de zero. Num dicionrio de snscrito, voc encontra uma explicao bastante detalhada sobre o termo indiano para o zero, que shnya, afirma o fsico Roberto de Andrade Martins, do Grupo de Histria e Teoria da Cincia da Universidade Estadual de Campinas (Unicamp). Como adjetivo, shnya significa vazio, deserto, estril. Aplica-se a uma pessoa solitria, sem amigos; a um indivduo indiferente ou insensvel. O termo descreve um sentimento de ausncia, a falta de algo, uma ao sem resultados. Como substantivo, shnya refere-se ao nada, ao vcuo, inexistncia. A partir do sculo VIII d.C., os rabes levaram para a Europa, junto com os outros algarismos, tanto o smbolo que os indianos haviam criado para o zero quanto prpria ideia de vazio, nulo, no-existente. E difundiram o termo shnya que, em rabe, se tornou shifr e foi latinizado para zephirum, depois zfiro, zefro e, por fim, zero. 5 Bem distante da ndia, nas Amricas, por volta dos sculos IV e III a.C., os maias tambm deduziram uma representao para o nada. O sistema de numerao deles era composto por pontos e traos, que indicavam unidades e dezenas. Tinham duas notaes para o zero. A primeira era uma elipse fechada que lembrava um olho. Servia para compor os nmeros. A segunda notao, simblica, remetia a um dos calendrios dos maias. O conceito do vazio era to significativo entre eles que havia uma divindade especfica para o zero: era o deus Zero, o deus da Morte. Os maias foram os inventores desse nmero no continente americano. A partir deles, outros grupos, como os astecas, conheceram o princpio do zero, diz o historiador Leandro Karnal, da Unicamp. 6 E os geniais gregos, o que pensavam a respeito do zero? Nada. Apesar dos avanos na geometria e na lgica, os gregos jamais conceberam uma representao do vazio, que, para eles, era um conceito at mesmo antiesttico. No fazia sentido existir vazio num mundo to bem organizado e lgico seria o caos, um fator de desordem. (Os filsofos pr-socrticos levaram em conta o conceito de vazio entre as partculas, mas a ideia no vingou.) Aristteles chegou a dizer que a natureza tinha horror ao vcuo. 7 Conceber o conceito do zero exigiu uma abstrao muito grande, diz o historiador da matemtica Ubiratan DAmbrosio, da Pontifcia Universidade Catlica de So Paulo (PUC). Quando o homem aprendeu a calcular, h cerca de 5.000 anos, fazia associaes simples a partir de situaes concretas: para cada ovelha, uma pedrinha. Duas ovelhas, duas pedrinhas e assim por diante. Se sobrassem pedras, o pastor sabia que provavelmente alguma ovelha tinha sido atacada por um lobo ou se desgarrado das demais, diz o matemtico Irineu Bicudo, da Universidade Estadual Paulista (Unesp), em Rio Claro. O passo seguinte foi representar graficamente esses nmeros com smbolos e fazer contas com eles. 8 Os babilnios, que viveram na Mesopotmia (onde hoje o Iraque) por volta do ano 2.500 a.C., foram os primeiros a chegar a uma noo de zero. Pioneiros na arte de calcular, criaram o que hoje se chama de sistema de numerao posicional. Apesar do nome comprido, a ideia simples. Nesse sistema, os algarismos tm valor pela posio que ocupam, explica Irineu. Trata-se do sistema que utilizamos atualmente. Veja o nmero 222 o valor do 2 depende da posio em que ele se encontra: o primeiro vale 200, o segundo 20 e o terceiro 2. Outros povos antigos, como os egpcios e os gregos, no usavam esse sistema continuavam a atribuir a cada nmero um sinal diferente, fechando os olhos para a possibilidade matemtica do zero. 9 O sistema posicional facilitou, e muito, os clculos dos babilnios. Contudo, era comum que muitas contas resultassem em nmeros que apresentavam uma posio vazia, como o nosso 401. (Note que, depois do 4, no h nmero na casa das dezenas. Se voc no indicasse essa ausncia com o zero, o 401 se tornaria 41, causando enorme confuso.) O que, ento, os babilnios fizeram? Como ainda no tinham o zero, deixaram um espao vazio separando os nmeros, a fim de indicar que naquela coluna do meio no havia nenhum algarismo (era como se escrevssemos 4_1). O palco para a estreia do zero estava pronto. Com o tempo, para evitar qualquer confuso na hora de copiar os nmeros de uma tbua de barro para outra, os babilnios passaram a separar os nmeros com alguns sinais especficos. Os babilnios tentaram representar graficamente o nada, mostrando o abstrato de uma forma concreta, diz Ubiratan. 10 Perceba como um problema prtico a necessidade de separar nmeros e apontar colunas vazias levou a uma tentativa de sinalizar o no-existente. Trata-se de uma abstrao bastante sofisticada representar a inexistncia de medida, o vazio enquanto nmero, ou seja, o zero, diz a historiadora da cincia Ana Maria Alfonso Goldfarb, da PUC. Temos apenas projees culturais a respeito do que abstrato, afirma Leandro Karnal. Na tentativa de tornar concreta uma situao imaginria, cada povo busca as referncias que tem mo. Veja o caso dos chineses: eles representavam o zero com um caractere chamado ling, que significava aquilo que ficou para trs, como os pingos de chuva depois de uma tempestade.Trata-se de um exerccio tremendo de abstrao. Voc j parou para pensar como, pessoalmente, encara o vazio? 11 Apesar de ser atraente, o zero no foi recebido de braos abertos pela Europa, quando apareceu por l, levado pelos rabes. surpreendente ver quanta resistncia a noo de zero encontrou: o medo do novo e do desconhecido, supersties sobre o nada relacionadas ao diabo, uma relutncia em pensar, diz o matemtico americano Robert Kaplan, autor do livro The Nothing That Is (O Nada que Existe, recm-lanado no Brasil) e orientador de um grupo de estudos sobre a matemtica na Universidade Harvard. O receio diante do zero vem desde a Idade Mdia. Os povos medievais o ignoravam solenemente. Com o zero, qualquer um poderia fazer contas, diz Ana Maria. Os matemticos da poca achavam que popularizar o clculo era o mesmo que jogar prolas aos porcos. Seria uma revoluo. 12 Por isso, Kaplan considera o zero um nmero subversivo. Ele nos obriga a repensar tudo o que alguma vez j demos por certo: da diviso aritmtica natureza de movimento, do clculo possibilidade de algo surgir do nada, afirma. Tornou-se fundamental para a cincia, da computao astronomia, da qumica fsica. O clculo integral e diferencial, desenvolvido por Newton e Leibniz, seria invivel sem o zero, diz Walter Maciel. Nesse tipo de clculo, para determinar a velocidade instantnea de um carro, por exemplo, voc deve levar em conta um intervalo de tempo infinitamente curto, que tende a zero. ( estranho calcular quanto o carro se deslocou em zero segundos, mas assim que funciona.) O clculo integral est na base de tudo o que a cincia construiu nos ltimos 200 anos, diz Maciel. 13 Ainda hoje o conceito de zero segue revirando nossas ideias. Falta muito para entendermos a complexidade desse nmero. Para o Ocidente, o zero continua a ser uma mera abstrao. Segundo Eduardo Basto de Albuquerque, professor de histria das religies da Unesp, em Assis, o pensamento filosfico ocidental trabalha com dois grandes paradigmas que no comportam um vazio cheio de sentido, como o indiano: o aristotlico (o mundo o que vemos e tocamos com nossos sentidos) e o platnico (o mundo um reflexo de essncias imutveis e eternas, que no podemos atingir pelos sentidos e sim pela imaginao e pelo conhecimento). O Ocidente pensa o nada em oposio existncia de Deus: se no h Deus, ento o nada, diz Eduardo. Ora, mesmo na ausncia, poderia haver a presena de Deus. E o vazio pode ser uma realidade. s pensar na teoria atmica, desenvolvida no sculo XX: o mundo formado por partculas diminutas que precisam de um vazio entre elas para se mover. 14 Talvez o zero assuste porque carrega com ele um outro paradigma: o de um nada que existe efetivamente. 15 Na matemtica, por mais que parea limitado a um ou dois papis, a funo do zero tambm especial como ele mesmo faz questo de mostrar porque, desde o primeiro momento, rebelou-se contra as regras que todo nmero precisa seguir. O zero viabilizou a subtrao de um nmero natural por ele mesmo (1 1 = 0). Multiplicado por um algarismo escolha do fregus, no deixa de ser zero (0 x 4 = 0). Pode ser dividido por qualquer um dos colegas (0 3 = 0), que no muda seu jeito. Mas no deixa nenhum nmero por mais pomposo que se julgue ser dividido por ele, zero. Tem ainda outros truques. Voc pensa que ele intil? Experimente colocar alguns gmeos meus direita no valor de um cheque para voc ver a diferena, diz o zero. No entanto, mesmo que todos os zeros do universo se acomodem no lado esquerdo de um outro algarismo nada muda. Da a expresso zero esquerda, que provm da matemtica e indica nulidade ou insignificncia. 16 Mas o zero como voc pde ver decididamente no um zero esquerda. Foi uma surpresa constatar como central a ideia de zero: o nada que gera tudo, diz Kaplan. E mais: h quem diga que o zero parente do infinito, outra abstrao que mudou as bases do pensamento cientfico, religioso e filosfico. Eles so equivalentes e opostos, yin e yang, escreve o jornalista americano Charles Seife, autor de Zero: The Biography of a DangerousIdea (Zero: A Biografia de uma Ideia Perigosa), lanado no ano passado nos Estados Unidos. O epteto atribudo ao zero no ttulo ideia perigosa no est ali por acaso. Apesar da rejeio e do exlio, o zero sempre derrotou aqueles que se opuseram a ele, afirma Seife. A humanidade nunca conseguiu encaixar o zero em suas filosofias. Em vez disso, o zero moldou a nossa viso sobre o universo e tambm sobre Deus. E influenciou, sorrateiramente, a prpria filosofia. De fato, trata-se de um perigo. Disponvel em http://super.abril.com.br/ciencia/importancia-numero-zero-442058.shtml. Acesso em 14 mar. 2012. (ADAPTADO) Texto II CERTAS COISAS (Lulu Santos) (1) No existiria som (2) Se no houvesse o silncio (3) No haveria luz (4) Se no fosse a escurido (5) A vida mesmo assim, (6) Dia e noite, no e sim... (7) Cada voz que canta o amor no diz (8) Tudo o que quer dizer, (9) Tudo o que cala fala (10) Mais alto ao corao. (11) Silenciosamente eu te falo com paixo... (12) Eu te amo calado, (13) Como quem ouve uma sinfonia (14) De silncios e de luz. (15) Ns somos medo e desejo, (16) Somos feitos de silncio e som, (17) Tem certas coisas que eu no sei dizer... (18) A vida mesmo assim, (19) Dia e noite, no e sim... (20) Cada voz que canta o amor no diz (21) Tudo o que quer dizer, (22) Tudo o que cala fala (23) Mais alto ao corao. (24) Silenciosamente eu te falo com paixo... (25) Eu te amo calado, (26) Como quem ouve uma sinfonia (27) De silncios e de luz, (28) Ns somos medo e desejo, (29) Somos feitos de silncio e som, (30) Tem certas coisas que eu no sei dizer... Disponvel em http://letras.terra.com.br/lulu-santos/35063/. Acesso em 15 mar. 2012 Indique a alternativa em que o nexo coesivo destacado tem sentido diferente dos demais.