(IME - 2021/2022)
Seja \(\alpha\, \epsilon\, \mathbb{R}\) e \(z_1\), \(z_2\), \(z_3\) números complexos tais que \(\left | z_1 \right |=\left | z_2 \right |=\left | z_3 \right |=4\) e \(z_1 \neq z_2\). O menor valor de \(\left | \alpha z_{1}-(\alpha - 1)z_{2}-z_{3} \right |\), é:
\(\frac{1}{8}\left | z_{1}+z_{2} \right |\).
\(\frac{1}{4}\left | z_{1}-z_{2} \right |\).
\(\frac{1}{8}\left | z_{3}-z_{1} \right |\left | z_{3}-z_{2} \right |\).
\(\frac{1}{4}\left | z_{1}-z_{2}-z_{3} \right |\).
\(\left | z_{3} \right |\).