(ITA - 1998 - 1a FASE) Uma pirmide regular tem por base um quadrado de lado 2 cm. Sabe-se que as faces formam com a base ngulos de 45 . Ento, a razo entre a rea da base e a rea lateral igual a:
(Ita 1998) O valor de y IR que satisfaz a igualdade, é:
(Ita 1998) Seja a, b ∈ IR. Considere os sistemas lineares em x, y e z: Se ambos admitem infinitas soluções reais, então:
(Ita 1998) Sejam x e y números reais tais que: Então, o número complexo z = x + iy é tal que z3 e valem, respectivamente:
(Ita 1998) Considere a hipérbole H e a parábola T, cujas equações são, respectivamente, 5(x + 3)2 - 4(y - 2)2 = -20 e (y - 3)2 = 4(x - 1). Então, o lugar geométrico dos pontos P, cuja soma dos quadrados das distâncias de P a cada um dos focos da hipérbole H é igual ao triplo do quadrado da distância de P ao vértice da parábola T, é:
(Ita 1998) Considere um cone circular reto cuja geratriz medecm e o diâmetro da base mede 2 cm. Traçam-se n planos paralelos à base do cone, que o seccionam determinando n + 1 cones, incluindo o original, de modo que a razão entre os volumes do cone maior e do cone menor é 2. Os volumes destes cones formam uma progressão aritmética crescente cuja soma é igual a 2. Então, o volume, em cm3, do tronco de cone determinado por dois planos consecutivos é igual a:
(Ita 1998) Seja (a1, a2, a3, ...) uma progresso geomtrica infinita de razo a1, 0 a1 1, e soma igual a 3a1. A soma dos trs primeiros termos desta progresso geomtrica :
(ITA -1998) Considere as afirmaes sobre polgonos convexos: Existe apenas um polgono cujo nmero de diagonais coincide com o nmero de lados. No existe polgono cujo nmero de diagonais seja o qudruplo do nmero de lados. Se a razo entre o nmero de diagonais e o de lados de um polgono um nmero natural, ento o nmero de lados do polgono mpar.
(Ita 1998) Considere, no plano complexo, um polígono regular cujos vértices são as soluções da equação z6 = 1. A área deste polígono, em unidades de área, é igual a:
(ITA 1998) Considere o paralelogramo ABCD onde A=(0, 0), B=(-1, 2) e C=(-3, -4). Os ângulos internos distintos e o vértice D deste paralelogramo são, respectivamente
(ITA - 1998) A inequao satisfeita para todo x S. Ento:
(ITA 1998) O valor de, para todo x[0,[, é:
(ITA - 1997) Seja um valor fixado no intervalo ]0, /2[. Sabe-se que a1= cotg o primeiro termo de uma progresso geomtrica infinita de razo q = sen2. A soma de todos os termos dessa progresso
(Ita 1997) Seja S o conjunto de todas as raízes da equação 2x6 - 4x5 + 4x - 2 = 0. Sobre os elementos de S podemos afirmar que
(Ita 1997) Dentro de um tronco de pirâmide quadrangular regular, considera-se uma pirâmide regular cuja base é a base maior do tronco e cujo vértice é o centro da base menor do tronco. As arestas das bases medem a cm e 2a cm. As áreas laterais do tronco e da pirâmide são iguais. A altura (em cm) do tronco mede